1,369 research outputs found

    Function approximation via the subsampled Poincaré inequality

    Get PDF
    Function approximation and recovery via some sampled data have long been studied in a wide array of applied mathematics and statistics fields. Analytic tools, such as the Poincaré inequality, have been handy for estimating the approximation errors in different scales. The purpose of this paper is to study a generalized Poincaré inequality, where the measurement function is of subsampled type, with a small but non-zero lengthscale that will be made precise. Our analysis identifies this inequality as a basic tool for function recovery problems. We discuss and demonstrate the optimality of the inequality concerning the subsampled lengthscale, connecting it to existing results in the literature. In application to function approximation problems, the approximation accuracy using different basis functions and under different regularity assumptions is established by using the subsampled Poincaré inequality. We observe that the error bound blows up as the subsampled lengthscale approaches zero, due to the fact that the underlying function is not regular enough to have well-defined pointwise values. A weighted version of the Poincaré inequality is proposed to address this problem; its optimality is also discussed

    Robust Execution of Contact-Rich Motion Plans by Hybrid Force-Velocity Control

    Full text link
    In hybrid force-velocity control, the robot can use velocity control in some directions to follow a trajectory, while performing force control in other directions to maintain contacts with the environment regardless of positional errors. We call this way of executing a trajectory hybrid servoing. We propose an algorithm to compute hybrid force-velocity control actions for hybrid servoing. We quantify the robustness of a control action and make trade-offs between different requirements by formulating the control synthesis as optimization problems. Our method can efficiently compute the dimensions, directions and magnitudes of force and velocity controls. We demonstrated by experiments the effectiveness of our method in several contact-rich manipulation tasks. Link to the video: https://youtu.be/KtSNmvwOenM.Comment: Proceedings of IEEE International Conference on Robotics and Automation (ICRA2019

    Function approximation via the subsampled Poincaré inequality

    Get PDF
    Function approximation and recovery via some sampled data have long been studied in a wide array of applied mathematics and statistics fields. Analytic tools, such as the Poincaré inequality, have been handy for estimating the approximation errors in different scales. The purpose of this paper is to study a generalized Poincaré inequality, where the measurement function is of subsampled type, with a small but non-zero lengthscale that will be made precise. Our analysis identifies this inequality as a basic tool for function recovery problems. We discuss and demonstrate the optimality of the inequality concerning the subsampled lengthscale, connecting it to existing results in the literature. In application to function approximation problems, the approximation accuracy using different basis functions and under different regularity assumptions is established by using the subsampled Poincaré inequality. We observe that the error bound blows up as the subsampled lengthscale approaches zero, due to the fact that the underlying function is not regular enough to have well-defined pointwise values. A weighted version of the Poincaré inequality is proposed to address this problem; its optimality is also discussed

    A Comprehensive Study and Comparison of the Robustness of 3D Object Detectors Against Adversarial Attacks

    Full text link
    Recent years have witnessed significant advancements in deep learning-based 3D object detection, leading to its widespread adoption in numerous applications. As 3D object detectors become increasingly crucial for security-critical tasks, it is imperative to understand their robustness against adversarial attacks. This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks. Specifically, we extend three distinct adversarial attacks to the 3D object detection task, benchmarking the robustness of state-of-the-art LiDAR-based 3D object detectors against attacks on the KITTI and Waymo datasets. We further analyze the relationship between robustness and detector properties. Additionally, we explore the transferability of cross-model, cross-task, and cross-data attacks. Thorough experiments on defensive strategies for 3D detectors are conducted, demonstrating that simple transformations like flipping provide little help in improving robustness when the applied transformation strategy is exposed to attackers. Finally, we propose balanced adversarial focal training, based on conventional adversarial training, to strike a balance between accuracy and robustness. Our findings will facilitate investigations into understanding and defending against adversarial attacks on LiDAR-based 3D object detectors, thus advancing the field. The source code is publicly available at \url{https://github.com/Eaphan/Robust3DOD}.Comment: 30 pages, 14 figure

    CAPIA: Cloud Assisted Privacy-Preserving Image Annotation

    Get PDF
    Using public cloud for image storage has become a prevalent trend with the rapidly increasing number of pictures generated by various devices. For example, today\u27s most smartphones and tablets synchronize photo albums with cloud storage platforms. However, as many images contain sensitive information, such as personal identities and financial data, it is concerning to upload images to cloud storage. To eliminate such privacy concerns in cloud storage while keeping decent data management and search features, a spectrum of keywords-based searchable encryption (SE) schemes have been proposed in the past decade. Unfortunately, there is a fundamental gap remains open for their support of images, i.e., appropriate keywords need to be extracted for images before applying SE schemes to them. On one hand, it is obviously impractical for smartphone users to manually annotate their images. On the other hand, although cloud storage services now offer image annotation services, they rely on access to users\u27 unencrypted images. To fulfill this gap and open the first path from SE schemes to images, this paper proposes a cloud assisted privacy-preserving automatic image annotation scheme, namely CAPIA. CAPIA enables cloud storage users to automatically assign keywords to their images by leveraging the power of cloud computing. Meanwhile, CAPIA prevents the cloud from learning the content of images and their keywords. Thorough analysis is carried out to demonstrate the security of CAPIA. A prototype implementation over the well-known IAPR TC-12 dataset further validates the efficiency and accuracy of CAPIA

    Formulation And Functional Properties Of Whey Protein Based Tissue Adhesive Using Totarol As An Antimicrobial Agent

    Get PDF
    Tissue adhesives have been widely used in surgical procedures. Compared to traditional surgical sutures, tissue adhesives provide fast bonding experiences and full closure of wounds. However, current tissue adhesives are mostly fossil-based synthetic products. Therefore, it is of great significance to explore the use of natural polymers in tissue adhesives. Whey is a low-end byproduct of cheese making. Whey protein consists of a group of small globular proteins. They can exhibit adhesive properties if their structures are modified by physical or chemical means. The objectives of this study were to investigate the formulation and functional properties of whey protein based tissue adhesive with an antimicrobial agent, totarol. Whey protein isolate (WPI) solutions (25-33% protein) were mixed with different levels (0.1%-0.3%, v/v) of totarol. The total plate counts and yeast and mold counts in the mixtures were negative except the control and the low dosage of totarol. The lap-shear bonding strength was tested after the WPI-totarol solutions were mixed with the crosslinking agent. The lap-shear bonding strength of the optimal tissue adhesive was about 20 kPa, which is comparable to that of a commercial BioGlue®. The microstructures of the mixtures were also examined by Scanning Electron Microscopy (SEM)
    • …
    corecore